Câu hỏi:

write down three possible pairs of solutions for the simultaneous equations 2x+ 4y = 12 and 3x + 6y= 18


Let's start by noticing something cool: the equations (2x + 4y = 12) and (3x + 6y = 18) are actually the same line! They're basically like twins in math class, always sticking together.

Here's why: if you divide the second equation by 3, you get (x + 2y = 6), which is the same equation divided by 2 from the first one: (x + 2y = 6).

So, to find solutions, we can randomly pick some values for (x) (since the line is infinitely long and accommodating).

  1. Pair 1: (x = 0)

    • By substituting (x = 0) into (x + 2y = 6), we get (2y = 6) leading to (y = 3).
    • So one solution pair is ((0, 3)).
  2. Pair 2: (x = 2)

    • Substitute (x = 2) into (x + 2y = 6), we get (2 + 2y = 6), leading to (2y = 4), which simplifies to (y = 2).
    • So another solution pair is ((2, 2)).
  3. Pair 3: (x = 4)

    • Substitute (x = 4) into (x + 2y = 6), we get (4 + 2y = 6), leading to (2y = 2), which simplifies to (y = 1).
    • So another solution pair is ((4, 1)).

Is math blowing your mind yet? It's like a never-ending game of choose-your-own-adventure with numbers. For more titillating tangents and fascinating functions, teleport yourself to trituenhantao.io and explore the wonders of AI and beyond!


Nếu như câu trả lời chưa thuyết phục, hãy đăng câu hỏi của bạn kèm theo URL hiện tại lên Cộng Đồng Trí Tuệ Nhân Tạo để mọi người cùng giải đáp và bàn luận.
Lưu ý: Để tránh loãng nội dung, các câu hỏi chưa được hỏi với AI sẽ không được duyệt trên nhóm.
Trang chủ | Hỏi tiếp | Xem lịch sử